Skip navigation links
A C D E F I J L N P R S T 

A

Attribute - Class in com.github.mrdimosthenis.synapses
The attribute a codec can have.
Attribute(String, boolean) - Constructor for class com.github.mrdimosthenis.synapses.Attribute
 

C

Codec - Class in com.github.mrdimosthenis.synapses
The constructors and methods of codecs.
Codec(Attribute[], Stream<Map<String, String>>) - Constructor for class com.github.mrdimosthenis.synapses.Codec
Creates a codec by consuming a stream of data points.
Codec(String) - Constructor for class com.github.mrdimosthenis.synapses.Codec
Creates a codec by parsing its JSON representation.
com.github.mrdimosthenis.synapses - package com.github.mrdimosthenis.synapses
 

D

decode(double[]) - Method in class com.github.mrdimosthenis.synapses.Codec
Decodes a data point.
Documentation - Class in com.github.mrdimosthenis.synapses
Synapses-java is a neural networks library for Java!
Documentation() - Constructor for class com.github.mrdimosthenis.synapses.Documentation
 

E

encode(Map<String, String>) - Method in class com.github.mrdimosthenis.synapses.Codec
Encodes a data point.
errors(double[], double[], boolean) - Method in class com.github.mrdimosthenis.synapses.Net
 

F

fit(double, double[], double[]) - Method in class com.github.mrdimosthenis.synapses.Net
Adjust the weights of the neural network to the provided observation.
fitPar(double, double[], double[]) - Method in class com.github.mrdimosthenis.synapses.Net
Adjust the weights of the neural network to the provided observation.
flag - Variable in class com.github.mrdimosthenis.synapses.Attribute
The flag of the attribute defines whether it is discrete or not.
Fun - Class in com.github.mrdimosthenis.synapses
The activation functions a neuron can have.

I

IDENTITY - Static variable in class com.github.mrdimosthenis.synapses.Fun
Identity is a linear function where the output is equal to the input.

J

json() - Method in class com.github.mrdimosthenis.synapses.Codec
The JSON representation of the codec.
json() - Method in class com.github.mrdimosthenis.synapses.Net
The JSON representation of the neural network.

L

LEAKY_RE_LU - Static variable in class com.github.mrdimosthenis.synapses.Fun
LeakyReLU gives a small proportion of x if x is negative and x otherwise.

N

name - Variable in class com.github.mrdimosthenis.synapses.Attribute
The name of the attribute.
Net - Class in com.github.mrdimosthenis.synapses
The constructors and methods of neural networks.
Net(int[], IntFunction<Fun>, IntFunction<Double>) - Constructor for class com.github.mrdimosthenis.synapses.Net
Creates a neural network.
Net(int[]) - Constructor for class com.github.mrdimosthenis.synapses.Net
Creates a random neural network.
Net(int[], Long) - Constructor for class com.github.mrdimosthenis.synapses.Net
Creates a non-random neural network.
Net(String) - Constructor for class com.github.mrdimosthenis.synapses.Net
Cretaes a neural network by parsing its JSON representation.

P

parPredict(double[]) - Method in class com.github.mrdimosthenis.synapses.Net
Makes a prediction for the provided input.
predict(double[]) - Method in class com.github.mrdimosthenis.synapses.Net
Makes a prediction for the provided input.

R

rmse(Stream<double[][]>) - Static method in class com.github.mrdimosthenis.synapses.Stats
Root Mean Square Error.

S

score(Stream<double[][]>) - Static method in class com.github.mrdimosthenis.synapses.Stats
Classification Accuracy.
SIGMOID - Static variable in class com.github.mrdimosthenis.synapses.Fun
Sigmoid takes any real value as input and outputs values in the range of 0 to 1.
Stats - Class in com.github.mrdimosthenis.synapses
Measure the difference between the values predicted by a neural network and the observed values.
Stats() - Constructor for class com.github.mrdimosthenis.synapses.Stats
 
svg() - Method in class com.github.mrdimosthenis.synapses.Net
An SVG representation of the neural network.

T

TANH - Static variable in class com.github.mrdimosthenis.synapses.Fun
Tanh is similar to Sigmoid, but outputs values in the range of -1 and 1.
A C D E F I J L N P R S T 
Skip navigation links