Synapses
Synapses is a lightweight library for neural networks that runs anywhere!
// run
npm i synapses@7.3.1
// in the directory of your node project
# run
pip install synapses-py==7.3.1
# in the directory of your project
// add
<dependency>
<groupId>com.github.mrdimosthenis</groupId>
<artifactId>synapses_2.13</artifactId>
<version>7.3.1</version>
</dependency>
// to pom.xml
// run
dotnet add package SynapsesCSharp --version 7.3.1
// in the directory of your project
// add
libraryDependencies +=
"com.github.mrdimosthenis" %% "synapses" % "7.3.1"
// to build.sbt
// run
dotnet add package Synapses --version 7.3.1
// in the directory of your project
Neural Network
Create a neural network
Import Synapses
, call NeuralNetwork.init
and provide the size of each layer.
require('synapses');
let layers = [4, 6, 5, 3];
let neuralNetwork = NeuralNetwork.init(layers);
from synapses_py import *
layers = [4, 6, 5, 3]
neuralNetwork = NeuralNetwork.init(layers)
import synapses.jvm.library.*;
int[] layers = {4, 6, 5, 3};
NeuralNetwork neuralNetwork = NeuralNetwork.init(layers);
using SynapsesCSharp;
int[] layers = {4, 6, 5, 3};
NeuralNetwork neuralNetwork = NeuralNetwork.init(layers);
import synapses.Library._
val layers = List(4, 6, 5, 3)
val neuralNetwork = NeuralNetwork.init(layers)
open Synapses
let layers = [4; 6; 5; 3]
let neuralNetwork = NeuralNetwork.init(layers)
neuralNetwork
has 4 layers. The first layer has 4 input nodes and the last layer has 3 output nodes.
There are 2 hidden layers with 6 and 5 neurons respectively.
Get a prediction
let inputValues = [1.0, 0.5625, 0.511111, 0.47619];
let prediction =
NeuralNetwork.prediction(neuralNetwork, inputValues);
inputValues = [1.0, 0.5625, 0.511111, 0.47619]
prediction = \
NeuralNetwork.prediction(neuralNetwork, inputValues)
double[] inputValues = {1.0, 0.5625, 0.511111, 0.47619};
double[] prediction =
NeuralNetwork.prediction(neuralNetwork, inputValues);
double[] inputValues = {1.0, 0.5625, 0.511111, 0.47619};
double[] prediction =
NeuralNetwork.prediction(neuralNetwork, inputValues);
val inputValues = List(1.0, 0.5625, 0.511111, 0.47619)
val prediction =
NeuralNetwork.prediction(neuralNetwork, inputValues)
let inputValues = [1.0; 0.5625; 0.511111; 0.47619]
let prediction =
NeuralNetwork.prediction(neuralNetwork, inputValues)
prediction
should be something like [ 0.8296, 0.6996, 0.4541 ]
.
Fit network
let learningRate = 0.5;
let expectedOutput = [0.0, 1.0, 0.0];
let fitNetwork =
NeuralNetwork.fit(
neuralNetwork,
learningRate,
inputValues,
expectedOutput
);
learningRate = 0.5
expectedOutput = [0.0, 1.0, 0.0]
fitNetwork = \
NeuralNetwork.fit(
neuralNetwork,
learningRate,
inputValues,
expectedOutput
)
double learningRate = 0.5;
double[] expectedOutput = {0.0, 1.0, 0.0};
NeuralNetwork fitNetwork =
NeuralNetwork.fit(
neuralNetwork,
learningRate,
inputValues,
expectedOutput
);
double learningRate = 0.5;
double[] expectedOutput = {0.0, 1.0, 0.0};
NeuralNetwork fitNetwork =
NeuralNetwork.fit(
neuralNetwork,
learningRate,
inputValues,
expectedOutput
);
val learningRate = 0.5
val expectedOutput = List(0.0, 1.0, 0.0)
val fitNetwork =
NeuralNetwork.fit(
neuralNetwork,
learningRate,
inputValues,
expectedOutput
)
let learningRate = 0.5
let expectedOutput = [0.0; 1.0; 0.0]
let fitNetwork =
NeuralNetwork.fit(
neuralNetwork,
learningRate,
inputValues,
expectedOutput
)
fitNetwork
is a new neural network trained with a single observation.
to train a neural network, you should fit with multiple datapoints
Create a customized neural network
The activation function of the neurons created with NeuralNetwork.init
, is a sigmoid one.
If you want to customize the activation functions and the weight distribution, call NeuralNetwork.customizedInit
.
function activationF(layerIndex) {
switch (layerIndex) {
case 0:
return ActivationFunction.sigmoid;
case 1:
return ActivationFunction.identity;
case 2:
return ActivationFunction.leakyReLU;
case 3:
return ActivationFunction.tanh;
}
}
function weightInitF(_layerIndex) {
return 1.0 - 2.0 * Math.random();
}
let customizedNetwork =
NeuralNetwork.customizedInit(
layers,
activationF,
weightInitF
);
def activationF(layerIndex):
if layerIndex == 0:
return ActivationFunction.sigmoid
elif layerIndex == 1:
return ActivationFunction.identity
elif layerIndex == 2:
return ActivationFunction.leakyReLU
else:
return ActivationFunction.tanh
def weightInitF(_layerIndex):
return 1.0 - 2.0 * random()
customizedNetwork = \
NeuralNetwork.customizedInit(
layers,
activationF,
weightInitF
)
ActivationFunction activationF(int layerIndex) {
switch (layerIndex) {
case 0:
return ActivationFunction.sigmoid();
case 1:
return ActivationFunction.identity();
case 2:
return ActivationFunction.leakyReLU();
default:
return ActivationFunction.tanh();
}
}
double weightInitF(int _layerIndex) {
Random rnd = new Random();
return 1.0 - 2.0 * rnd.nextDouble();
}
NeuralNetwork customizedNetwork =
NeuralNetwork.customizedInit(
layers,
this::activationF,
this::weightInitF
);
ActivationFunction activationF(int layerIndex) {
switch (layerIndex) {
case 0:
return ActivationFunction.sigmoid;
case 1:
return ActivationFunction.identity;
case 2:
return ActivationFunction.leakyReLU;
default:
return ActivationFunction.tanh;
}
}
double weightInitF(int _layerIndex) {
Random rnd = new Random();
return 1.0 - 2.0 * rnd.NextDouble();
}
NeuralNetwork customizedNetwork =
NeuralNetwork.customizedInit(
layers,
activationF,
weightInitF
);
def activationF(layerIndex: Int): ActivationFunction =
layerIndex match {
case 0 => ActivationFunction.sigmoid
case 1 => ActivationFunction.identity
case 2 => ActivationFunction.leakyReLU
case 3 => ActivationFunction.tanh
}
def weightInitF(_layerIndex: Int): Double =
1.0 - 2.0 * new Random().nextDouble()
val customizedNetwork =
NeuralNetwork.customizedInit(
layers,
activationF,
weightInitF
)
let activationF (layerIndex: int)
: ActivationFunction =
match layerIndex with
| 0 -> ActivationFunction.sigmoid
| 1 -> ActivationFunction.tanh
| 2 -> ActivationFunction.leakyReLU
| _ -> ActivationFunction.identity
let weightInitF (_layerIndex: int): float =
1.0 - 2.0 * System.Random().NextDouble()
let customizedNetwork =
NeuralNetwork.customizedInit(
layers,
activationF,
weightInitF
)
Visualization
Call NeuralNetwork.toSvg
to take a brief look at its svg drawing.
The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.
let svg = NeuralNetwork.toSvg(customizedNetwork);
svg = NeuralNetwork.toSvg(customizedNetwork)
String svg = NeuralNetwork.toSvg(customizedNetwork);
string svg = NeuralNetwork.toSvg(customizedNetwork);
val svg = NeuralNetwork.toSvg(customizedNetwork)
let svg = NeuralNetwork.toSvg(customizedNetwork)
Save and load a neural network
JSON instances are compatible across platforms! We can generate, train and save a neural network in Python and then load and make predictions in Javascript!
toJson
Call NeuralNetwork.toJson
on a neural network and get a string representation of it.
Use it as you like. Save json
in the file system or insert into a database table.
let json = NeuralNetwork.toJson(customizedNetwork);
json = NeuralNetwork.toJson(customizedNetwork)
String json = NeuralNetwork.toJson(customizedNetwork);
string json = NeuralNetwork.toJson(customizedNetwork);
val json = NeuralNetwork.toJson(customizedNetwork)
let json = NeuralNetwork.toJson(customizedNetwork)
ofJson
let loadedNetwork = NeuralNetwork.ofJson(json);
loadedNetwork = NeuralNetwork.ofJson(json)
NeuralNetwork loadedNetwork = NeuralNetwork.ofJson(json);
NeuralNetwork loadedNetwork = NeuralNetwork.ofJson(json);
val loadedNetwork = NeuralNetwork.ofJson(json)
let loadedNetwork = NeuralNetwork.ofJson(json)
As the name suggests, NeuralNetwork.ofJson
turns a json string into a neural network.
Encoding and decoding
One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0.
Minmax normalization scales continuous attributes into values between 0.0 and 1.0.
You can use DataPreprocessor
for datapoint encoding and decoding.
The first parameter of DataPreprocessor.init
is a list of tuples (attributeName, discreteOrNot).
let setosaDatapoint = {
petal_length: "1.5",
petal_width: "0.1",
sepal_length: "4.9",
sepal_width: "3.1",
species: "setosa"
};
let versicolorDatapoint = {
petal_length: "3.8",
petal_width: "1.1",
sepal_length: "5.5",
sepal_width: "2.4",
species: "versicolor"
};
let virginicaDatapoint = {
petal_length: "6.0",
petal_width: "2.2",
sepal_length: "5.0",
sepal_width: "1.5",
species: "virginica"
};
let datasetArr = [ setosaDatapoint,
versicolorDatapoint,
virginicaDatapoint ];
let datasetIter = datasetArr[Symbol.iterator]();
let dataPreprocessor =
DataPreprocessor.init(
[ ["petal_length", false],
["petal_width", false],
["sepal_length", false],
["sepal_width", false],
["species", true] ],
datasetIter
);
let encodedDatapoints = datasetArr.map(x =>
DataPreprocessor.encodedDatapoint(dataPreprocessor, x)
);
setosaDatapoint = {
"petal_length": "1.5",
"petal_width": "0.1",
"sepal_length": "4.9",
"sepal_width": "3.1",
"species": "setosa"
}
versicolorDatapoint = {
"petal_length": "3.8",
"petal_width": "1.1",
"sepal_length": "5.5",
"sepal_width": "2.4",
"species": "versicolor"
}
virginicaDatapoint = {
"petal_length": "6.0",
"petal_width": "2.2",
"sepal_length": "5.0",
"sepal_width": "1.5",
"species": "virginica"
}
datasetList = [ setosaDatapoint,
versicolorDatapoint,
virginicaDatapoint ]
dataPreprocessor = \
DataPreprocessor.init(
[ ("petal_length", False),
("petal_width", False),
("sepal_length", False),
("sepal_width", False),
("species", True) ],
iter(datasetList)
)
encodedDatapoints = map(lambda x:
DataPreprocessor.encodedDatapoint(dataPreprocessor, x),
datasetList
)
Map<String, String> setosaDatapoint =
new HashMap<String, String>() {
{
put("petal_length", "1.5");
put("petal_width", "0.1");
put("sepal_length", "4.9");
put("sepal_width", "3.1");
put("species", "setosa");
}
};
Map<String, String> versicolorDatapoint =
new HashMap<String, String>() {
{
put("petal_length", "3.8");
put("petal_width", "1.1");
put("sepal_length", "5.5");
put("sepal_width", "2.4");
put("species", "versicolor");
}
};
Map<String, String> virginicaDatapoint =
new HashMap<String, String>() {
{
put("petal_length", "6.0");
put("petal_width", "2.2");
put("sepal_length", "5.0");
put("sepal_width", "1.5");
put("species", "virginica");
}
};
Map[] datasetArr = {
setosaDatapoint,
versicolorDatapoint,
virginicaDatapoint
};
Stream datasetStream =
Arrays.stream(datasetArr);
DataPreprocessor dataPreprocessor =
DataPreprocessor.init(
new Object[][]{
{"petal_length", false},
{"petal_width", false},
{"sepal_length", false},
{"sepal_width", false},
{"species", true}
},
datasetStream
);
Stream<double[]> encodedDatapoints = datasetStream.map(x ->
DataPreprocessor
.encodedDatapoint(
dataPreprocessor, (Map<String, String>) x
)
);
Dictionary<string, string> setosaDatapoint =
new Dictionary<string, string>()
{
{"petal_length", "1.5"},
{"petal_length", "1.5"},
{"petal_width", "0.1"},
{"sepal_length", "4.9"},
{"sepal_width", "3.1"},
{"species", "setosa"}
};
Dictionary<string, string> versicolorDatapoint =
new Dictionary<string, string>()
{
{"petal_length", "3.8"},
{"petal_width", "1.1"},
{"sepal_length", "5.5"},
{"sepal_width", "2.4"},
{"species", "versicolor"}
};
Dictionary<string, string> virginicaDatapoint =
new Dictionary<string, string>()
{
{"petal_length", "6.0"},
{"petal_width", "2.2"},
{"sepal_length", "5.0"},
{"sepal_width", "1.5"},
{"species", "virginica"}
};
IEnumerable<Dictionary<string, string>> dataset =
new List<Dictionary<string, string>>()
{
setosaDatapoint,
versicolorDatapoint,
virginicaDatapoint
};
DataPreprocessor dataPreprocessor =
DataPreprocessor.init(
new (string, bool)[]
{
("petal_length", false),
("petal_width", false),
("sepal_length", false),
("sepal_width", false),
("species", true)
},
dataset
);
IEnumerable<double[]> encodedDatapoints = dataset.Select(x =>
DataPreprocessor
.encodedDatapoint(dataPreprocessor, x)
);
val setosaDatapoint = Map(
"petal_length" -> "1.5",
"petal_width" -> "0.1",
"sepal_length" -> "4.9",
"sepal_width" -> "3.1",
"species" -> "setosa"
)
val versicolorDatapoint = Map(
"petal_length" -> "3.8",
"petal_width" -> "1.1",
"sepal_length" -> "5.5",
"sepal_width" -> "2.4",
"species" -> "versicolor"
)
val virginicaDatapoint = Map(
"petal_length" -> "6.0",
"petal_width" -> "2.2",
"sepal_length" -> "5.0",
"sepal_width" -> "1.5",
"species" -> "virginica"
)
val dataset = LazyList(
setosaDatapoint,
versicolorDatapoint,
virginicaDatapoint
)
val dataPreprocessor =
DataPreprocessor.init(
List( ("petal_length", false),
("petal_width", false),
("sepal_length", false),
("sepal_width", false),
("species", true) ),
dataset
)
val encodedDatapoints = dataset.map(x =>
DataPreprocessor.encodedDatapoint(dataPreprocessor, x)
)
let setosaDatapoint =
Map.ofList
[ ("petal_length", "1.5")
("petal_width", "0.1")
("sepal_length", "4.9")
("sepal_width", "3.1")
("species", "setosa") ]
let versicolorDatapoint =
Map.ofList
[ ("petal_length", "3.8")
("petal_width", "1.1")
("sepal_length", "5.5")
("sepal_width", "2.4")
("species", "versicolor") ]
let virginicaDatapoint =
Map.ofList
[ ("petal_length", "6.0")
("petal_width", "2.2")
("sepal_length", "5.0")
("sepal_width", "1.5")
("species", "virginica") ]
let dataset = Seq.ofList
[ setosaDatapoint
versicolorDatapoint
virginicaDatapoint ]
let dataPreprocessor =
DataPreprocessor.init(
[ ("petal_length", false)
("petal_width", false)
("sepal_length", false)
("sepal_width", false)
("species", true) ],
dataset
)
let encodedDatapoints =
Seq.map (fun datapoint ->
DataPreprocessor.encodedDatapoint(dataPreprocessor, datapoint)
)
dataset
encodedDatapoints
equals to
[ [ 0.0 , 0.0 , 0.0 , 1.0 , 0.0, 0.0, 1.0 ],
[ 0.511111, 0.476190, 1.0 , 0.562500, 0.0, 1.0, 0.0 ],
[ 1.0 , 1.0 , 0.166667, 0.0 , 1.0, 0.0, 0.0 ] ]
Save and load the preprocessor by calling DataPreprocessor.toJson
and DataPreprocessor.ofJson
.
Evaluation
To evaluate a neural network, you can call Statistics.rootMeanSquareError
and provide the expected and predicted values.
let expectedWithOutputValuesArr =
[ [ [ 0.0, 0.0, 1.0], [ 0.0, 0.0, 1.0] ],
[ [ 0.0, 0.0, 1.0], [ 0.0, 1.0, 1.0] ] ];
let expectedWithOutputValuesIter =
expectedWithOutputValuesArr[Symbol.iterator]();
let rmse = Statistics.rootMeanSquareError(
expectedWithOutputValuesIter
);
expectedWithOutputValuesList = \
[ ( [ 0.0, 0.0, 1.0], [ 0.0, 0.0, 1.0] ),
( [ 0.0, 0.0, 1.0], [ 0.0, 1.0, 1.0] ) ];
expectedWithOutputValuesIter = \
iter(expectedWithOutputValuesList)
rmse = Statistics.rootMeanSquareError(
expectedWithOutputValuesIter
)
double[][][] expectedWithOutputValuesArr = {
{{0.0, 0.0, 1.0}, {0.0, 0.0, 1.0}},
{{0.0, 0.0, 1.0}, {0.0, 1.0, 1.0}}
};
Stream<double[][]> expectedWithOutputValuesStream =
Arrays.stream(expectedWithOutputValuesArr);
double rmse = Statistics
.rootMeanSquareError(expectedWithOutputValuesStream);
IEnumerable<(double[], double[])> expectedWithOutputValues =
new List<(double[], double[])>()
{
(new double[] {0.0, 0.0, 1.0}, new double[] {0.0, 0.0, 1.0}),
(new double[] {0.0, 0.0, 1.0}, new double[] {0.0, 1.0, 1.0})
};
double rmse = Statistics
.rootMeanSquareError(expectedWithOutputValues);
val expectedWithOutputValues =
LazyList(
(List(0.0, 0.0, 1.0), List(0.0, 0.0, 1.0)),
(List(0.0, 0.0, 1.0), List(0.0, 1.0, 1.0))
)
val rmse = Statistics.rootMeanSquareError(
expectedWithOutputValues
)
let expectedWithOutputValues =
Seq.ofList [ ( [ 0.0; 0.0; 1.0], [ 0.0; 0.0; 1.0] )
( [ 0.0; 0.0; 1.0], [ 0.0; 1.0; 1.0] ) ]
let rmse = Statistics.rootMeanSquareError(
expectedWithOutputValues
)